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Overview of Probability

I Probability is a measure of one’s belief in the occurrence
of a future event.

I The subject of probability theory is the foundation upon
which all of statistics is built, providing a means for
modeling populations, experiments, or almost anything
else that could be considered a random phenomenon.
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Some Interesting Problem

I (Birthday Problem) What is the probability that at least
2 people in a class with 48 students have the same
birthday (Month and day)?

I Year has 365 days (forget leap year).
I Equal likelihood for each day.

I You should be able to solve this problem by the end of
this chapter.
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Elements of Probability: Random Experiment

Prior to performing the experiment or activity, you do not know for
certain which particular outcome will occur. For example,

I Tossing a coin once.

I Tossing a coin three times.

I Observing the lifetime of an electronic component.

I Drawing three cards (with replacement) from a standard
deck of cards.
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Elements of Probability: Sample Space

The set of all possible outcomes for a given random experiment is
called the sample space, denoted by S . (discrete vs. continuous)

I Tossing a coin once. S = {Head ,Tail}.

I Tossing a coin three times.
S = {HHH,HHT , ...,HTT ,TTT}.

I Drawing three cards (with replacement) from a standard
deck of cards. S = {?}.

I Observing the lifetime of an electronic component.
S = {ω : ω > 0}.

The element of the sample space is called outcome, denoted by ω.
We use nS to denote the number of elements in the sample space
(discrete).
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Elements of Probability: Event

I An event is a set of possible outcomes that is of interest.
Using mathematical notation, suppose that S is a sample
space for a random experiment. We say that A is an event
in S if the outcome ω satisfies {ω ∈ S : ω ∈ A}.

I We would like to develop a mathematical framework so
that we can assign probability to an event A. This will
quantify how likely the event is. The probability that the
event A occurs is denoted by P(A).

I More precisely, probability measure is a real-valued
function defined on a set of events in a probability space
that satisfies measure properties.
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Equiprobability Model

I Suppose that a sample space S contains nS <∞
outcomes, each of which is equally likely. If the event A
contains nA outcomes, then

P(A) =
nA
nS

.

I Tossing a fair coin three times. Let event
A = {exactly two heads} = {HHT ,HTH,THH}. Then,
P(A) = nA

nS
= 3

8 .

I If I randomly pull a card out of a pack of 52 cards, what is
the chance it’s a black card? ( ) Not a diamond? ( )

I Warning: If the outcomes in S are not equally likely, then
this result is not applicable.
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Interpretation of Probability

I One particular interpretation of probability is view
probability as a limiting proportion.

I If the experiment is repeatable, then P(A) can be
interpreted as the percentage of times that A will occur
“over the long run” This is called the relative frequency
interpretation.
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Simulation: Toss A Fair Coin 5000 Times
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Simulation R Code

x <- rbinom(n=5000,size=1,prob=0.5)

y <- rep(0,5000)

y[1] <- x[1]

for(i in 2:5000){

y[i] <- y[i-1] + x[i]

}

prop <- y / seq(from=1, to=5000, by=1)

plot(prop, xlab="Times", ylab="Proportion of heads",

main="Toss fair coin 5000 times

and keep track of proportion of heads")

abline(h = 0.5, col="red")
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Union and Intersection of Events

I The union of two events A and B is the set of all possible
outcomes ω in either event or both. By notation,

A ∪ B = {ω : ω ∈ A or ω ∈ B}.

I Using Venn diagram, the union can be expressed as
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Union and Intersection of Events (cont.)

I The intersection of two events A and B is the set of all
possible outcomes ω in the both events. By notation,

A ∩ B = {ω : ω ∈ A and ω ∈ B}.

I Using Venn diagram, the intersection can be expressed as
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Mutually Exclusive Events

I Mutually exclusive events can not occur at the same
time. If events A and B are mutually exclusive, then
A ∩ B = ∅, where ∅ is the null event.

I Using Venn diagram, the mutually exclusive events can be
expressed as
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Example: Roommate Profile

Suppose your old roommate moves out, and you want to pick
up a new roommate, the following table summarizes the
roommate profile

Snores Doesn’t Snore Total

Parties 150 100 250

Doesn’t Party 200 550 750

Total 350 650 1000

Table : Roommate Profile (Frequency - Counts)
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Example: Roommate Profile (cont.)

Snores Doesn’t Snore Total

Parties 0.15 0.1 0.25

Doesn’t Party 0.2 0.55 0.75

Total 0.350 0.65 1

Table : Roommate Profile (Relative Frequency - Probability)

I What is the probability that a randomly chosen roommate
will snore?

I What is the probability that a randomly chosen roommate
will like to party?

I What is the probability that a randomly chosen roommate
will snore or like to party?
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Union of Two Events

I If events A and B intersect, you have to subtract out the
“double count”. From the Venn diagram, it is easy to see

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

which is called additive law.

I If A and B are mutually exclusive, then A ∩ B = ∅ and
P(∅) = 0, it follows that

P(A ∪ B) = P(A) + P(B)

16 / 48



Kolmogorov Axioms

For any sample space S , a probability P must satisfy

1. 0 ≤ P(A) ≤ 1, for any event A

2. P(S) = 1

3. If A1,A2, . . . ,An are pairwise mutually exclusive events,
then

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai ).

Note that “pairwise mutually exclusive” means that
Ai ∩ Aj = ∅ for all i 6= j , i , j = 1, 2, ..., n.
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Discussion: Kolmogorov Axioms

These three properties are usually referred to as the Axioms of
Probability. Any function P satisfies the Axioms of Probability is
called a probability function. Other nice properties can be derived
simply by using them. For example,

I P(∅) = 0

I If A ⊆ B then P(A) ≤ P(B)

Question: can you derive these properties using the axioms?
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Conditional Probability

I A conditional probability is the probability that an event
will occur, given or when another event is known to
occur or to have occurred

I Definition: Let A and B be events in a sample space S
with P(B) > 0. The conditional probability of A, given
that B has occurred, is

P(A|B) =
P(A ∩ B)

P(B)
.

I Solving the conditional probability formula for the
probability of the intersection of A and B yields

P(A ∩ B) = P(A|B)× P(B).
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Conditional Probability (cont.)

I If B = S , then the conditional probability of A, given B has
occured, is equal to unconditional probability of A:

P(A|B) = P(A|S) =
P(A ∩ S)

P(S)
=

P(A)

P(S)
=

P(A)

1
= P(A)

I If B 6= S , then we can understand the conditional probability
in this “informal” way: we are only interested in the
probability of event A when event B has occured. So, we
manually “shrink” the sample space S to be B so that we can
calculate the probability of A in the restricted space with the
scale of B.
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Example: Conditional Probability

In a company, 36 percent of the employees have a degree from
a SEC university, 22 percent of the employees that have a
degree from the SEC are also engineers, and 30 percent of the
employees are engineers. An employee is selected at random.

I Compute the probability that the employee is an engineer
and is from the SEC.

I Compute the conditional probability that the employee is
from the SEC, given that s/he is an engineer.

Solution: Let
A = {The employee is an engineer}
B = {The employee is from SEC}
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Example: Conditional Probability (cont.)

We want to calculate P(A ∩ B). From the information in the
problem, we have P(A) = 0.3, P(B) = 0.36, and
P(A|B) = 0.22. Therefore,

P(A ∩ B) = P(A|B)P(B) = 0.22× 0.36 = 0.0792.

For the second part, we want to calculate P(B|A). From the
previous calculation

P(B|A) =
P(A ∩ B)

P(A)
= 0.0792/0.3 = 0.264.
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Example: Roommate Profile Revisit

I Given that a randomly chosen roommate snores, what is
the probability that he/she likes to party?

Snores Doesn’t Snore Total

Parties 150 100 250

Doesn’t Party 200 550 750

Total 350 650 1000

Table : Roommate Profile (Frequency - Counts)

Solution:
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Example: Conditional Probability (cont.)

I Note that, in both examples, the conditional probability
P(B|A) and the unconditional probability P(B) are NOT
equal. In other words, knowledge that A “has occurred”
has changed the likelihood that B occurs.

I In other situations, it might be that the occurrence (or
non-occurrence) of a companion event has no effect on
the probability of the event of interest. This leads us to
the definition of independence.
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Independence

I Definition: When P(A|B) = P(A), we say that events A
and B are independent. If A and B are not independent,
they are said to be dependent events.

I This definition is symmetric,
P(A|B) = P(A) ⇐⇒ P(B|A) = P(B).

I Under independence assumption,
P(A ∩ B) = P(A|B)P(B) = P(A)P(B)
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Complementary Events

I The complement of an event is the set of the outcomes
not included in the event, but still part of the sample
space. The complement of A is denoted by A or Ac or A′.

I The Venn diagram is
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Complementary Events (cont.)

I By additive law P(A ∪ B) = P(A) + P(B)− P(A ∩ B),
which implies that 1 = P(S) = P(A ∪ A) = P(A) + P(A),
so that

P(A) = 1− P(A)

I DeMorgan’s Law: it is useful when the calculation
involves two events and their complements. Let A and B
be two events

A ∪ B = A ∩ B

A ∩ B = A ∪ B

I Question: Can you prove the DeMorgan’s Law (formally
or informally) ?
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Example: Complementary Events

The probability that Tom will be alive in 20 years is 0.75 (A).
The probability that Nancy will be alive in 20 years is 0.85 (B).

I Assuming independence, what is the probability that
neither will be alive 20 years from now?

I Still assuming independence, what is the probability that
only one of the two, Tom or Nancy, will be alive in twenty
years?

I What is the probability of the complement of both Nancy
and Tom not being alive in 20 years?
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Question

All mutually exclusive events are complementary.

I Yes.

I No.

If events A and B are mutually exclusive, then A and B are
independent.

I Yes.

I No.

29 / 48



Probability Rules

1. Complement rule: Suppose that A is an event.

P(A) = 1− P(A).

2. Additive law: Suppose that A and B are two events.

P(A ∪ B) = P(A) + P(B)− P(A ∩ B).

3. Multiplicative law:
P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A).

4. Law of Total Probability:
P(A) = P(A|B)P(B) + P(A|B)P(B).

5. Bayes’ rule:
P(B|A) = P(A|B)P(B)

P(A) = P(A|B)P(B)

P(A|B)P(B)+P(A|B)P(B)
.
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Applications of Probability Rules

I We purchase 30% of our parts from Vendor A. Vendor As
defective rate is 5%. What is the probability that a
randomly chosen part is a defective part from Vendor A?

I We are manufacturing widgets. 50% are red and 30% are
white. What is the probability that a randomly chosen
widget will not be white?

Solution:
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Applications of Probability Rules (cont.)

When a computer goes down, there is a 75% chance that it is
due to overload and a 15% chance that it is due to a software
problem. There is an 85% chance that it is due to an overload
or a software problem. What is the probability that both of
these problems are at fault?
Solution:
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Applications of Probability Rules (cont.)

It has been found that 80% of all accidents at foundries involve
human error and 40% involve equipment malfunction. 35%
involve both problems. If an accident involves an equipment
malfunction, what is the probability that there was also human
error?
Solution:
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Applications of Probability Rules (cont.)

Consider the following electrical circuit: The probability on the
components is their reliability (probability that they will
operate). Components are independent of each other. What is
the probability that the circuit will not operate when the
switch is thrown?
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Applications of Probability Rules (cont.)

Consider the electrical circuit below. Probabilities on the
components are reliabilities and all components are
independent. What is the probability that the circuit will work
when the switch is thrown?
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Applications of Probability Rules (cont.)

An insurance company classifies people as “accident-prone”
and “nonaccident-prone”. For a fixed year, the probability that
an accident-prone person has an accident is 0.4, and the
probability that a non-accident-prone person has an accident is
0.2. The population is estimated to be 30 percent
accident-prone. Define the events

A = {policy holder has an accident}
B = {policy holder is accident-prone}

We are given that P(B) = 0.3,P(A|B) = 0.4, and
P(A|B) = 0.2.
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Applications of Probability Rules (cont.)

I What is the probability that a new policy-holder will have
an accident?

I Suppose that the policy-holder does have an accident.
What is the probability that s/he is “accident-prone” ?
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Counting Methods

I For equal likelihood probability model, the probability of
event A depends on the size of A, i.e., the number of
elements in A, which is denoted by nA.

I Recall that if an experiment can result in any one of N
different, but equally likely, outcomes and if exactly n of
these outcomes corresponds to event A, then the
probability of event A is

P(A) =
nA
nS

=
n

N
.

I In the next several slides, several counting methods will be
presented, including Fundamental Theorem of Counting,
Factorial, Combination, and Permutations.
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Fundamental Theorem of Counting

I Theorem: Stated simply, it is the idea that if there are a
ways of doing something and b ways of doing another
thing, then there are a× b ways of performing both
actions.

I Example: When you decide to order pizza, you must first
choose the type of crust: thin or deep dish (2 choices).
Next, you choose one topping: cheese, pepperoni, or
sausage (3 choices). Using the fundamental theorem of
counting, you know that there are 2× 3 = 6 possible
combinations of ordering a pizza.
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Example: Fundamental Theorem of Counting

There are 5 processes needed to manufacture the side panel for
a car: clean, press, cut, paint, polish. Our plant has 6 cleaning
stations, 3 pressing stations, 8 cutting stations, 5 painting
stations, and 8 polishing stations.

I How many possible different “pathways” through the
manufacturing exist?( )

I What is the number of “pathways” that include a
particular pressing station?( )

I Assuming stations are choosen randomly, what is the
probability that a panel follows any particular
path?( )

I Assuming stations are choosen randomly, what is the
probability that a panel goes through pressing station
1?( )
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Permutation: Ordered Samples

I Permutation: ways to arrange distinct objects into a
sequence. For example, the number of permutations of n
different elements is

n! ≡ n(n − 1)(n − 2) . . . (2)(1).

I n! is read as n factorial, and 0! = 1.

I Theorem: Let there be n distinct objects. The number of
possible ordered samples of size r from these n objects is

Pn
r ≡ n× (n− 1)× (n− 2)× · · · × (n− r + 1) =

n!

(n − r)!
.

I Example: Let there be N = 10 people and suppose that
we are to sit r = 6 of them into 6 chairs, assume the
chairs are numbered. Then the number of ways of doing
this is .
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Combinations: Unordered Samples

I Theorem: Let there be n distinct objects and consider
taking an unordered sample of size r from these objects.
Then the number of possible samples is

Cn
r =

(
n

r

)
≡ n!

r !(n − r)!

I Example: Let there be 10 people and suppose we want to
obtain a sample of size 6 from this group without
considering the order of people, then the number of
possible samples is .
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Example: Counting Methods

9 out of 100 computer chips are defective. Chips are different.
We choose a random sample of n = 3.

I How many different samples of 3 are
possible?

I How many of the samples of 3 contain exactly 1 defective
chip?

I What is the probability of choosing exactly 1 defective
chip in a random sample of 3? (This is called
hypergeometric distribution later).

I What is the probability of choosing at least 1 defective
chip in a random sample of 3? (Hint: it is easier to
calculate the prob of choosing no defective
chip.)
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Example: Coin Tossing

What is the probability of getting 4 or 5 heads when tossing a
fair coin 10 times?
Solution: Let us define events

A = {getting 4 heads},
B = {getting 5 heads}.

P(getting 4 or 5 heads) = P(A ∪ B) = P(A) + P(B), since
A ∩ B = ∅.
The event A “looks” like
A = {HHHHTTTTTT ,HTTHTHHTTT , . . . ,TTTTTHHHH}.
It is easy to see that each element in A is assigned probability
(0.54)(0.56) = 0.510. By combination formula, these are total(10
4

)
elements in A.
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Example: Coin Tossing (cont.)

It follows that P(A) =
(10
4

)
0.510. By a similar argument, one

can show that P(B) =
(10
5

)
0.510.

Therefore,

P(A∪B) = P(A)+P(B) =

(
10

4

)
0.510 +

(
10

5

)
0.510 = 0.4512.

Later, we will solve this problem using binomial distribution.
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Birthday Problem

What is the probability that at least 2 people in this class
(n=48) have the same birthday (Month and day)?

I Year has 365 days (forget leap year).

I Equal likelihood for each day.

Solution: This is a classical model. Let event

A = {at least 2 students share the same birthday.}

Then the complement of event A is

A = {no student shares the same birthday.}

We know nS = 36548, and

nA = (365)(364) . . . (365− 48 + 1) =
365!

(365− 48)!
(= P365

48 ).

46 / 48



Birthday Problem (Cont.)

I Therefore,

P(A) =
nA
nS

=
365!/(365− 48)!

36548
=

365!

(365− 48)!36548
≈ 0.0394.

I P(A) = 1− P(A) ≈ 0.9606. We have a surprisingly high
chance!

I How to we get the 0.0394 in R? One possible code is

factorial(365) / ( factorial(365-48) * 365^48 )

I R returns an error message from the above code because 365!
is way to large.
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Birthday Problem (Cont.)

I A smart way calculate this probability is to use “combination”
to avoid 365! as following:

P(A) =
365!

(365− 48)!36548

=

[
365!

(365− 48)!48!

](
48!

36548

)
= C 365

48

(
48!

36548

)
I In R, it is

choose(365, 48) * factorial(48) / 365^48
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